p-group, metabelian, nilpotent (class 2), monomial
Aliases: C24.52D4, C25.5C22, C24.630C23, C24.43(C2×C4), (C22×C4).122D4, C22.123(C4×D4), C23.720(C2×D4), (C23×C4).8C22, C22.67C22≀C2, C23.343(C4○D4), C22.99(C4⋊D4), C23.39(C22⋊C4), C23.299(C22×C4), C2.3(C23.10D4), C2.4(C23.34D4), C2.2(C23.11D4), C2.7(C23.23D4), C22.49(C4.4D4), C22.73(C42⋊C2), C22.24(C42⋊2C2), C2.6(C24.C22), C22.72(C22.D4), (C2×C22⋊C4)⋊12C4, (C22×C4).98(C2×C4), (C2×C2.C42)⋊4C2, (C22×C22⋊C4).4C2, C22.140(C2×C22⋊C4), SmallGroup(128,172)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C24.52D4
G = < a,b,c,d,e,f | a2=b2=c2=d2=e4=1, f2=d, faf-1=ab=ba, ac=ca, ad=da, eae-1=abc, bc=cb, bd=db, be=eb, bf=fb, cd=dc, ce=ec, cf=fc, de=ed, df=fd, fef-1=bde-1 >
Subgroups: 788 in 368 conjugacy classes, 108 normal (8 characteristic)
C1, C2, C2, C2, C4, C22, C22, C22, C2×C4, C23, C23, C23, C22⋊C4, C22×C4, C22×C4, C24, C24, C24, C2.C42, C2×C22⋊C4, C2×C22⋊C4, C23×C4, C25, C2×C2.C42, C22×C22⋊C4, C22×C22⋊C4, C24.52D4
Quotients: C1, C2, C4, C22, C2×C4, D4, C23, C22⋊C4, C22×C4, C2×D4, C4○D4, C2×C22⋊C4, C42⋊C2, C4×D4, C22≀C2, C4⋊D4, C22.D4, C4.4D4, C42⋊2C2, C23.34D4, C23.23D4, C24.C22, C23.10D4, C23.11D4, C24.52D4
(1 19)(2 51)(3 17)(4 49)(5 12)(6 23)(7 10)(8 21)(9 35)(11 33)(13 50)(14 20)(15 52)(16 18)(22 34)(24 36)(25 47)(26 42)(27 45)(28 44)(29 64)(30 40)(31 62)(32 38)(37 58)(39 60)(41 56)(43 54)(46 55)(48 53)(57 61)(59 63)
(1 40)(2 37)(3 38)(4 39)(5 46)(6 47)(7 48)(8 45)(9 56)(10 53)(11 54)(12 55)(13 61)(14 62)(15 63)(16 64)(17 32)(18 29)(19 30)(20 31)(21 27)(22 28)(23 25)(24 26)(33 43)(34 44)(35 41)(36 42)(49 60)(50 57)(51 58)(52 59)
(1 61)(2 62)(3 63)(4 64)(5 44)(6 41)(7 42)(8 43)(9 25)(10 26)(11 27)(12 28)(13 40)(14 37)(15 38)(16 39)(17 59)(18 60)(19 57)(20 58)(21 54)(22 55)(23 56)(24 53)(29 49)(30 50)(31 51)(32 52)(33 45)(34 46)(35 47)(36 48)
(1 19)(2 20)(3 17)(4 18)(5 55)(6 56)(7 53)(8 54)(9 47)(10 48)(11 45)(12 46)(13 50)(14 51)(15 52)(16 49)(21 43)(22 44)(23 41)(24 42)(25 35)(26 36)(27 33)(28 34)(29 39)(30 40)(31 37)(32 38)(57 61)(58 62)(59 63)(60 64)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52)(53 54 55 56)(57 58 59 60)(61 62 63 64)
(1 36 19 26)(2 23 20 41)(3 34 17 28)(4 21 18 43)(5 52 55 15)(6 62 56 58)(7 50 53 13)(8 64 54 60)(9 51 47 14)(10 61 48 57)(11 49 45 16)(12 63 46 59)(22 38 44 32)(24 40 42 30)(25 31 35 37)(27 29 33 39)
G:=sub<Sym(64)| (1,19)(2,51)(3,17)(4,49)(5,12)(6,23)(7,10)(8,21)(9,35)(11,33)(13,50)(14,20)(15,52)(16,18)(22,34)(24,36)(25,47)(26,42)(27,45)(28,44)(29,64)(30,40)(31,62)(32,38)(37,58)(39,60)(41,56)(43,54)(46,55)(48,53)(57,61)(59,63), (1,40)(2,37)(3,38)(4,39)(5,46)(6,47)(7,48)(8,45)(9,56)(10,53)(11,54)(12,55)(13,61)(14,62)(15,63)(16,64)(17,32)(18,29)(19,30)(20,31)(21,27)(22,28)(23,25)(24,26)(33,43)(34,44)(35,41)(36,42)(49,60)(50,57)(51,58)(52,59), (1,61)(2,62)(3,63)(4,64)(5,44)(6,41)(7,42)(8,43)(9,25)(10,26)(11,27)(12,28)(13,40)(14,37)(15,38)(16,39)(17,59)(18,60)(19,57)(20,58)(21,54)(22,55)(23,56)(24,53)(29,49)(30,50)(31,51)(32,52)(33,45)(34,46)(35,47)(36,48), (1,19)(2,20)(3,17)(4,18)(5,55)(6,56)(7,53)(8,54)(9,47)(10,48)(11,45)(12,46)(13,50)(14,51)(15,52)(16,49)(21,43)(22,44)(23,41)(24,42)(25,35)(26,36)(27,33)(28,34)(29,39)(30,40)(31,37)(32,38)(57,61)(58,62)(59,63)(60,64), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,36,19,26)(2,23,20,41)(3,34,17,28)(4,21,18,43)(5,52,55,15)(6,62,56,58)(7,50,53,13)(8,64,54,60)(9,51,47,14)(10,61,48,57)(11,49,45,16)(12,63,46,59)(22,38,44,32)(24,40,42,30)(25,31,35,37)(27,29,33,39)>;
G:=Group( (1,19)(2,51)(3,17)(4,49)(5,12)(6,23)(7,10)(8,21)(9,35)(11,33)(13,50)(14,20)(15,52)(16,18)(22,34)(24,36)(25,47)(26,42)(27,45)(28,44)(29,64)(30,40)(31,62)(32,38)(37,58)(39,60)(41,56)(43,54)(46,55)(48,53)(57,61)(59,63), (1,40)(2,37)(3,38)(4,39)(5,46)(6,47)(7,48)(8,45)(9,56)(10,53)(11,54)(12,55)(13,61)(14,62)(15,63)(16,64)(17,32)(18,29)(19,30)(20,31)(21,27)(22,28)(23,25)(24,26)(33,43)(34,44)(35,41)(36,42)(49,60)(50,57)(51,58)(52,59), (1,61)(2,62)(3,63)(4,64)(5,44)(6,41)(7,42)(8,43)(9,25)(10,26)(11,27)(12,28)(13,40)(14,37)(15,38)(16,39)(17,59)(18,60)(19,57)(20,58)(21,54)(22,55)(23,56)(24,53)(29,49)(30,50)(31,51)(32,52)(33,45)(34,46)(35,47)(36,48), (1,19)(2,20)(3,17)(4,18)(5,55)(6,56)(7,53)(8,54)(9,47)(10,48)(11,45)(12,46)(13,50)(14,51)(15,52)(16,49)(21,43)(22,44)(23,41)(24,42)(25,35)(26,36)(27,33)(28,34)(29,39)(30,40)(31,37)(32,38)(57,61)(58,62)(59,63)(60,64), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,36,19,26)(2,23,20,41)(3,34,17,28)(4,21,18,43)(5,52,55,15)(6,62,56,58)(7,50,53,13)(8,64,54,60)(9,51,47,14)(10,61,48,57)(11,49,45,16)(12,63,46,59)(22,38,44,32)(24,40,42,30)(25,31,35,37)(27,29,33,39) );
G=PermutationGroup([[(1,19),(2,51),(3,17),(4,49),(5,12),(6,23),(7,10),(8,21),(9,35),(11,33),(13,50),(14,20),(15,52),(16,18),(22,34),(24,36),(25,47),(26,42),(27,45),(28,44),(29,64),(30,40),(31,62),(32,38),(37,58),(39,60),(41,56),(43,54),(46,55),(48,53),(57,61),(59,63)], [(1,40),(2,37),(3,38),(4,39),(5,46),(6,47),(7,48),(8,45),(9,56),(10,53),(11,54),(12,55),(13,61),(14,62),(15,63),(16,64),(17,32),(18,29),(19,30),(20,31),(21,27),(22,28),(23,25),(24,26),(33,43),(34,44),(35,41),(36,42),(49,60),(50,57),(51,58),(52,59)], [(1,61),(2,62),(3,63),(4,64),(5,44),(6,41),(7,42),(8,43),(9,25),(10,26),(11,27),(12,28),(13,40),(14,37),(15,38),(16,39),(17,59),(18,60),(19,57),(20,58),(21,54),(22,55),(23,56),(24,53),(29,49),(30,50),(31,51),(32,52),(33,45),(34,46),(35,47),(36,48)], [(1,19),(2,20),(3,17),(4,18),(5,55),(6,56),(7,53),(8,54),(9,47),(10,48),(11,45),(12,46),(13,50),(14,51),(15,52),(16,49),(21,43),(22,44),(23,41),(24,42),(25,35),(26,36),(27,33),(28,34),(29,39),(30,40),(31,37),(32,38),(57,61),(58,62),(59,63),(60,64)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52),(53,54,55,56),(57,58,59,60),(61,62,63,64)], [(1,36,19,26),(2,23,20,41),(3,34,17,28),(4,21,18,43),(5,52,55,15),(6,62,56,58),(7,50,53,13),(8,64,54,60),(9,51,47,14),(10,61,48,57),(11,49,45,16),(12,63,46,59),(22,38,44,32),(24,40,42,30),(25,31,35,37),(27,29,33,39)]])
44 conjugacy classes
class | 1 | 2A | ··· | 2O | 2P | 2Q | 2R | 2S | 4A | ··· | 4X |
order | 1 | 2 | ··· | 2 | 2 | 2 | 2 | 2 | 4 | ··· | 4 |
size | 1 | 1 | ··· | 1 | 4 | 4 | 4 | 4 | 4 | ··· | 4 |
44 irreducible representations
dim | 1 | 1 | 1 | 1 | 2 | 2 | 2 |
type | + | + | + | + | + | ||
image | C1 | C2 | C2 | C4 | D4 | D4 | C4○D4 |
kernel | C24.52D4 | C2×C2.C42 | C22×C22⋊C4 | C2×C22⋊C4 | C22×C4 | C24 | C23 |
# reps | 1 | 4 | 3 | 8 | 8 | 4 | 16 |
Matrix representation of C24.52D4 ►in GL7(𝔽5)
1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 | 0 |
0 | 3 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 3 | 4 |
1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 4 |
4 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 |
3 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 1 |
0 | 0 | 0 | 0 | 0 | 0 | 4 |
2 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 2 | 3 | 0 | 0 | 0 | 0 |
0 | 0 | 3 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 3 | 1 | 0 | 0 |
0 | 0 | 0 | 2 | 2 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 4 |
G:=sub<GL(7,GF(5))| [1,0,0,0,0,0,0,0,4,3,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,4,0,0,0,0,0,0,4,0,0,0,0,0,0,0,1,3,0,0,0,0,0,0,4],[1,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,4],[4,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1],[3,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,4,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,4],[2,0,0,0,0,0,0,0,2,0,0,0,0,0,0,3,3,0,0,0,0,0,0,0,3,2,0,0,0,0,0,1,2,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,4] >;
C24.52D4 in GAP, Magma, Sage, TeX
C_2^4._{52}D_4
% in TeX
G:=Group("C2^4.52D4");
// GroupNames label
G:=SmallGroup(128,172);
// by ID
G=gap.SmallGroup(128,172);
# by ID
G:=PCGroup([7,-2,2,2,-2,2,2,2,448,141,422,387,58]);
// Polycyclic
G:=Group<a,b,c,d,e,f|a^2=b^2=c^2=d^2=e^4=1,f^2=d,f*a*f^-1=a*b=b*a,a*c=c*a,a*d=d*a,e*a*e^-1=a*b*c,b*c=c*b,b*d=d*b,b*e=e*b,b*f=f*b,c*d=d*c,c*e=e*c,c*f=f*c,d*e=e*d,d*f=f*d,f*e*f^-1=b*d*e^-1>;
// generators/relations