Copied to
clipboard

G = C24.52D4order 128 = 27

7th non-split extension by C24 of D4 acting via D4/C2=C22

p-group, metabelian, nilpotent (class 2), monomial

Aliases: C24.52D4, C25.5C22, C24.630C23, C24.43(C2×C4), (C22×C4).122D4, C22.123(C4×D4), C23.720(C2×D4), (C23×C4).8C22, C22.67C22≀C2, C23.343(C4○D4), C22.99(C4⋊D4), C23.39(C22⋊C4), C23.299(C22×C4), C2.3(C23.10D4), C2.4(C23.34D4), C2.2(C23.11D4), C2.7(C23.23D4), C22.49(C4.4D4), C22.73(C42⋊C2), C22.24(C422C2), C2.6(C24.C22), C22.72(C22.D4), (C2×C22⋊C4)⋊12C4, (C22×C4).98(C2×C4), (C2×C2.C42)⋊4C2, (C22×C22⋊C4).4C2, C22.140(C2×C22⋊C4), SmallGroup(128,172)

Series: Derived Chief Lower central Upper central Jennings

C1C23 — C24.52D4
C1C2C22C23C24C23×C4C22×C22⋊C4 — C24.52D4
C1C23 — C24.52D4
C1C24 — C24.52D4
C1C24 — C24.52D4

Generators and relations for C24.52D4
 G = < a,b,c,d,e,f | a2=b2=c2=d2=e4=1, f2=d, faf-1=ab=ba, ac=ca, ad=da, eae-1=abc, bc=cb, bd=db, be=eb, bf=fb, cd=dc, ce=ec, cf=fc, de=ed, df=fd, fef-1=bde-1 >

Subgroups: 788 in 368 conjugacy classes, 108 normal (8 characteristic)
C1, C2, C2, C2, C4, C22, C22, C22, C2×C4, C23, C23, C23, C22⋊C4, C22×C4, C22×C4, C24, C24, C24, C2.C42, C2×C22⋊C4, C2×C22⋊C4, C23×C4, C25, C2×C2.C42, C22×C22⋊C4, C22×C22⋊C4, C24.52D4
Quotients: C1, C2, C4, C22, C2×C4, D4, C23, C22⋊C4, C22×C4, C2×D4, C4○D4, C2×C22⋊C4, C42⋊C2, C4×D4, C22≀C2, C4⋊D4, C22.D4, C4.4D4, C422C2, C23.34D4, C23.23D4, C24.C22, C23.10D4, C23.11D4, C24.52D4

Smallest permutation representation of C24.52D4
On 64 points
Generators in S64
(1 19)(2 51)(3 17)(4 49)(5 12)(6 23)(7 10)(8 21)(9 35)(11 33)(13 50)(14 20)(15 52)(16 18)(22 34)(24 36)(25 47)(26 42)(27 45)(28 44)(29 64)(30 40)(31 62)(32 38)(37 58)(39 60)(41 56)(43 54)(46 55)(48 53)(57 61)(59 63)
(1 40)(2 37)(3 38)(4 39)(5 46)(6 47)(7 48)(8 45)(9 56)(10 53)(11 54)(12 55)(13 61)(14 62)(15 63)(16 64)(17 32)(18 29)(19 30)(20 31)(21 27)(22 28)(23 25)(24 26)(33 43)(34 44)(35 41)(36 42)(49 60)(50 57)(51 58)(52 59)
(1 61)(2 62)(3 63)(4 64)(5 44)(6 41)(7 42)(8 43)(9 25)(10 26)(11 27)(12 28)(13 40)(14 37)(15 38)(16 39)(17 59)(18 60)(19 57)(20 58)(21 54)(22 55)(23 56)(24 53)(29 49)(30 50)(31 51)(32 52)(33 45)(34 46)(35 47)(36 48)
(1 19)(2 20)(3 17)(4 18)(5 55)(6 56)(7 53)(8 54)(9 47)(10 48)(11 45)(12 46)(13 50)(14 51)(15 52)(16 49)(21 43)(22 44)(23 41)(24 42)(25 35)(26 36)(27 33)(28 34)(29 39)(30 40)(31 37)(32 38)(57 61)(58 62)(59 63)(60 64)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52)(53 54 55 56)(57 58 59 60)(61 62 63 64)
(1 36 19 26)(2 23 20 41)(3 34 17 28)(4 21 18 43)(5 52 55 15)(6 62 56 58)(7 50 53 13)(8 64 54 60)(9 51 47 14)(10 61 48 57)(11 49 45 16)(12 63 46 59)(22 38 44 32)(24 40 42 30)(25 31 35 37)(27 29 33 39)

G:=sub<Sym(64)| (1,19)(2,51)(3,17)(4,49)(5,12)(6,23)(7,10)(8,21)(9,35)(11,33)(13,50)(14,20)(15,52)(16,18)(22,34)(24,36)(25,47)(26,42)(27,45)(28,44)(29,64)(30,40)(31,62)(32,38)(37,58)(39,60)(41,56)(43,54)(46,55)(48,53)(57,61)(59,63), (1,40)(2,37)(3,38)(4,39)(5,46)(6,47)(7,48)(8,45)(9,56)(10,53)(11,54)(12,55)(13,61)(14,62)(15,63)(16,64)(17,32)(18,29)(19,30)(20,31)(21,27)(22,28)(23,25)(24,26)(33,43)(34,44)(35,41)(36,42)(49,60)(50,57)(51,58)(52,59), (1,61)(2,62)(3,63)(4,64)(5,44)(6,41)(7,42)(8,43)(9,25)(10,26)(11,27)(12,28)(13,40)(14,37)(15,38)(16,39)(17,59)(18,60)(19,57)(20,58)(21,54)(22,55)(23,56)(24,53)(29,49)(30,50)(31,51)(32,52)(33,45)(34,46)(35,47)(36,48), (1,19)(2,20)(3,17)(4,18)(5,55)(6,56)(7,53)(8,54)(9,47)(10,48)(11,45)(12,46)(13,50)(14,51)(15,52)(16,49)(21,43)(22,44)(23,41)(24,42)(25,35)(26,36)(27,33)(28,34)(29,39)(30,40)(31,37)(32,38)(57,61)(58,62)(59,63)(60,64), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,36,19,26)(2,23,20,41)(3,34,17,28)(4,21,18,43)(5,52,55,15)(6,62,56,58)(7,50,53,13)(8,64,54,60)(9,51,47,14)(10,61,48,57)(11,49,45,16)(12,63,46,59)(22,38,44,32)(24,40,42,30)(25,31,35,37)(27,29,33,39)>;

G:=Group( (1,19)(2,51)(3,17)(4,49)(5,12)(6,23)(7,10)(8,21)(9,35)(11,33)(13,50)(14,20)(15,52)(16,18)(22,34)(24,36)(25,47)(26,42)(27,45)(28,44)(29,64)(30,40)(31,62)(32,38)(37,58)(39,60)(41,56)(43,54)(46,55)(48,53)(57,61)(59,63), (1,40)(2,37)(3,38)(4,39)(5,46)(6,47)(7,48)(8,45)(9,56)(10,53)(11,54)(12,55)(13,61)(14,62)(15,63)(16,64)(17,32)(18,29)(19,30)(20,31)(21,27)(22,28)(23,25)(24,26)(33,43)(34,44)(35,41)(36,42)(49,60)(50,57)(51,58)(52,59), (1,61)(2,62)(3,63)(4,64)(5,44)(6,41)(7,42)(8,43)(9,25)(10,26)(11,27)(12,28)(13,40)(14,37)(15,38)(16,39)(17,59)(18,60)(19,57)(20,58)(21,54)(22,55)(23,56)(24,53)(29,49)(30,50)(31,51)(32,52)(33,45)(34,46)(35,47)(36,48), (1,19)(2,20)(3,17)(4,18)(5,55)(6,56)(7,53)(8,54)(9,47)(10,48)(11,45)(12,46)(13,50)(14,51)(15,52)(16,49)(21,43)(22,44)(23,41)(24,42)(25,35)(26,36)(27,33)(28,34)(29,39)(30,40)(31,37)(32,38)(57,61)(58,62)(59,63)(60,64), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,36,19,26)(2,23,20,41)(3,34,17,28)(4,21,18,43)(5,52,55,15)(6,62,56,58)(7,50,53,13)(8,64,54,60)(9,51,47,14)(10,61,48,57)(11,49,45,16)(12,63,46,59)(22,38,44,32)(24,40,42,30)(25,31,35,37)(27,29,33,39) );

G=PermutationGroup([[(1,19),(2,51),(3,17),(4,49),(5,12),(6,23),(7,10),(8,21),(9,35),(11,33),(13,50),(14,20),(15,52),(16,18),(22,34),(24,36),(25,47),(26,42),(27,45),(28,44),(29,64),(30,40),(31,62),(32,38),(37,58),(39,60),(41,56),(43,54),(46,55),(48,53),(57,61),(59,63)], [(1,40),(2,37),(3,38),(4,39),(5,46),(6,47),(7,48),(8,45),(9,56),(10,53),(11,54),(12,55),(13,61),(14,62),(15,63),(16,64),(17,32),(18,29),(19,30),(20,31),(21,27),(22,28),(23,25),(24,26),(33,43),(34,44),(35,41),(36,42),(49,60),(50,57),(51,58),(52,59)], [(1,61),(2,62),(3,63),(4,64),(5,44),(6,41),(7,42),(8,43),(9,25),(10,26),(11,27),(12,28),(13,40),(14,37),(15,38),(16,39),(17,59),(18,60),(19,57),(20,58),(21,54),(22,55),(23,56),(24,53),(29,49),(30,50),(31,51),(32,52),(33,45),(34,46),(35,47),(36,48)], [(1,19),(2,20),(3,17),(4,18),(5,55),(6,56),(7,53),(8,54),(9,47),(10,48),(11,45),(12,46),(13,50),(14,51),(15,52),(16,49),(21,43),(22,44),(23,41),(24,42),(25,35),(26,36),(27,33),(28,34),(29,39),(30,40),(31,37),(32,38),(57,61),(58,62),(59,63),(60,64)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52),(53,54,55,56),(57,58,59,60),(61,62,63,64)], [(1,36,19,26),(2,23,20,41),(3,34,17,28),(4,21,18,43),(5,52,55,15),(6,62,56,58),(7,50,53,13),(8,64,54,60),(9,51,47,14),(10,61,48,57),(11,49,45,16),(12,63,46,59),(22,38,44,32),(24,40,42,30),(25,31,35,37),(27,29,33,39)]])

44 conjugacy classes

class 1 2A···2O2P2Q2R2S4A···4X
order12···222224···4
size11···144444···4

44 irreducible representations

dim1111222
type+++++
imageC1C2C2C4D4D4C4○D4
kernelC24.52D4C2×C2.C42C22×C22⋊C4C2×C22⋊C4C22×C4C24C23
# reps14388416

Matrix representation of C24.52D4 in GL7(𝔽5)

1000000
0400000
0310000
0001000
0004400
0000010
0000034
,
1000000
0400000
0040000
0004000
0000400
0000010
0000001
,
1000000
0400000
0040000
0004000
0000400
0000040
0000004
,
4000000
0400000
0040000
0001000
0000100
0000010
0000001
,
3000000
0400000
0040000
0004000
0001100
0000011
0000004
,
2000000
0230000
0030000
0003100
0002200
0000040
0000004

G:=sub<GL(7,GF(5))| [1,0,0,0,0,0,0,0,4,3,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,4,0,0,0,0,0,0,4,0,0,0,0,0,0,0,1,3,0,0,0,0,0,0,4],[1,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,4],[4,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1],[3,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,4,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,4],[2,0,0,0,0,0,0,0,2,0,0,0,0,0,0,3,3,0,0,0,0,0,0,0,3,2,0,0,0,0,0,1,2,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,4] >;

C24.52D4 in GAP, Magma, Sage, TeX

C_2^4._{52}D_4
% in TeX

G:=Group("C2^4.52D4");
// GroupNames label

G:=SmallGroup(128,172);
// by ID

G=gap.SmallGroup(128,172);
# by ID

G:=PCGroup([7,-2,2,2,-2,2,2,2,448,141,422,387,58]);
// Polycyclic

G:=Group<a,b,c,d,e,f|a^2=b^2=c^2=d^2=e^4=1,f^2=d,f*a*f^-1=a*b=b*a,a*c=c*a,a*d=d*a,e*a*e^-1=a*b*c,b*c=c*b,b*d=d*b,b*e=e*b,b*f=f*b,c*d=d*c,c*e=e*c,c*f=f*c,d*e=e*d,d*f=f*d,f*e*f^-1=b*d*e^-1>;
// generators/relations

׿
×
𝔽